Application of Machine Learning to experimental
results from analytical chemistry

MECSm

Gareth Kennedy, Ph.D. mgarethkennedy

Data Engineering Manager, Australia Post : .
Affiliate of the School of Chemistry, Monash @MONASH University

Overview

* Introduction to Machine Learning

e Limitations of ML classifiers
* Overfitting
* Training data

* Using deep neural networks in electrochemistry

* Need for domain knowledge
e Al is not intelligent
 Sanity checks

e Using ML tools to augment role of a scientist

Introduction to Machine Learning

 Basic definition is a model that learns (increases prediction accuracy)
from experience (increasing data)

* Three types of ML:

* Supervised: Model learns from labelled data. Aim is to create a general model
trained on some labelled data provided by a human expert

* Unsupervised: Model learns by finding patterns (e.g. clusters) present in the
data itself. No input required from humans. Often called data mining.

* Reinforcement: Model learns by trial and error with a reinforcing reward

given for favourable outcomes (e.g. winning at Go) and a punishment for
unfavourable outcomes (e.g. losing a game)

* We'll focus on an example of supervised learning to demonstrate the
principals and limitations of machine learning

Supervised Learning Model

* Can be thought of as a function that maps an input (x) to a label (y)
* Training:

Known
Known
c1> Unknown
0
X| O .
1 " f(X) Cl) y
1

* Data consists of known inputs and labels

* Solve for the model parameters itself using linear algebra and optimization
mathematical methods

Supervised Learning Model

* Can be thought of as a function that maps an input (x) to a label (y)
e Prediction:
Known (new)

Unknown (predicted)

1 Known
0.1

X 89 > f(X) 8’9 y

* Parameters for the mapping function f(x) are now known from training
* A prediction (aka a classification) is made of the label for a new input x

Example Models, f(x)

K-Nearest Neighbours (kNN)

A A
" e A
|
L
. i
No
parameters

X, H, . H, H,'_‘_-f
[]
® . °
L] . ®
% o)
o o)
parameters ' .

Decision Trees (and Random Forest)

= 100% 100%
e —l $0.00 ﬂ £0.00
1 $0.00

| £0.00 o,

0%
| MNew Decision Tree $0.00 1.2 W‘ £0.00

| FALSE 9%
O(Sp“ts) 2_1 £0.00 .5|:|,.3c|
parameters
Hidden Layer

Artificial Neural —)) g

Network (ANN)

Lots of
parameters
Typically > O(10°)

G.% Output Layer

Yo n

Limitations

* Overfitting:
* Huge problem when there are model parameters than train data examples
(e.g. early covid-19 DNN hack models)

* Need for lots of unique examples in training data

* Training data issues:

* Training data is based on historical data:
new cases or rare edge cases are not included

* Unbalanced training data: e.g. fraud detection where the number of
anomalies is 1000s of times less frequent than normal transactions

* Aim for a general model that is robust to unexpected inputs,
unbiased, safe and becomes more accurate as data is added

* Deep knowledge of the data from a human needed as a sanity check

Using Deep Neural Networks in Electrochemistry

https://pubs.acs.org/doi/abs/10.1021/acs.analchem.9b01891

RETURN TO ISSUE <PREV ~ ARTICLE NEXT >

Automatically Identifying Electrode Reaction Mechanisms Using Deep Neural Networks
Gareth F. Kennedy, Jie Zhang*, and Alan M. Bond*

@ Cite this: Anal. Chem. 2019, 91, 19, 12220-12227 Article Views Altmetric Citations Share Addto Export
Publication Date: August 30, 2019 v

https://doi.org/10.1021/acs.analchem.9b01891 5 9 5 4 @ @
Copyright © 2019 American Chemical Society LEARN ABOUT THESE METRICS

RIGHTS & PERMISSIONS

Read Online PDF (4 MB) e Supporting Info (1) » SUBJECTS: Transfer reactions, Charge transfer, Voltammetry, v

Abstract

At present, electrochemical mechanisms are most commonly identified subjectively based on the
experience of the researcher. This subjectivity is reflected in bias to particular mechanisms as well as
lack of quantifiable confidence in the chosen mechanism compared to potential alternative
mechanisms. In this paper we demonstrate that a deep neural network trained to recognize dc cyclic
voltammograms for three commonly encountered mechanisms provides correct classifications
within 5 ms without the problem of subjectivity. To mimic experimental data, the impact of noise,

Automatic electrode reaction identification

 Currently, classifying an electrochemical mechanism takes an expert
with years of experience

* Electrode reactions occur in:
* Biosensors (e.g. diabetes and other automatic health monitoring devices)
e Substance sensors (e.g. explosive residual detection in airports)
* Fuel cell and battery technology (e.g. electrode efficiencies)
* Energy efficient reduction of CO, (e.g. climate change offset)

* Parameter fitting is required but many potential mechanisms

* Anything that helps to automatically narrow the possible mechanisms
is a huge time saver for scientists

Physical system

* A voltage is applied to the working electrode and the current
response depends on the chemical reactions at the electrode surface

* Examined three commonly encountered mechanisms:

* E: single electron transfer; A+e =B
* EE: two subsequent electron transfers: A+e=B,B+e=C
* EC: electron transfer followed by chemical reaction: A+e=B,B=C

* Have software that can generate all the (labelled) data we need
* MECSim is public via: http://garethkennedy.net/MECSimDownload.html

* Convert the dc cyclic voltammograms that a researcher would
examine (current vs voltage) into a machine learning friendly image

Data

* Applied voltage in red on
the top panels

* Simulated current in black

* DC voltammograms in
second row

* Human would identify the
mechanism based on the
shapes (# peaks etc)

* ML friendly 100x100
representation at bottom

Current (mA)

Current (mA)

2.0
1.5
1.0 4
0.5+
0.0 4
-0.5
-1.0
-1.5
=2.0
—25

2.0

1.5
1.0
0.5 4
0.0 4
-0.5
-1.04
-1.5

—-2.0 4
=25

DNN Input

EE_

. 0.5

EC

I
w [N] = o - L] w

)

-0.54

=1.04

-1.54

-2.04

=25

0.0 4

5 10 ES 20 25

0

5 10 15 20 25
Time (s)

0

5 10 15 20 25

1

w N = [=] = N w

0.5

- 0.04

—-0.5 4

L-1.0

--1.54

—2.0 4

2.5

-0.6 04 02 00 02 04 0.6 -0.6 04 02 00 02 04 0.6 -0.6 04 02 00 02 04 0.6

Applied Potential (V)

——

o
o

o
IS

o
N]

o
o

|
o
[N]

I
=
'S

|
o
o

Applied Potential (V)

Training data

* Want the data to cover as diverse
range as possible (here a variety
of shapes)

* Want to minimize bias in the data
(here some parameter
combinations will make one
mechanism indistinguishable
from another)

* For this example we could
carefully chose the range of
parameters used to generate our
training data set — generally we
are not so lucky

Pred=E : True=E

Pred=EE : True=EE

Pred=EE :

—
m
m

rue=

o
=%
m
m
wf
m
m

'u
Q
m
m
-
m
m

o
a
m
O
-
m
(2]

<
i
7

2
o
Il
=
e
o
Il

o
il
=
[=4
o

i

Pred=E : True=EE

Pred=E : True=E

Pred=E : True=E

Pred=EE : True=E

Pred=E : True=E

iﬁ

i

Pred=E : True=E

Pred=EE : True=EE

Pred=EE : True=EE

Pred=E : True=E

o
e
ot
m
Py
-
=
|

m
i

5
s
ﬂ?
ﬂ?

o o
= - =
m] ®
Q =%

Il Il]
m m
(3] O
3 = 3
c c c
)]]
Il Il Il
m m
] (e}

Pred=EC : True=EC

Pred=EC : True=EC

Pred=E : True=E

Pred=E : True=E

Pred=E : True=E

Pred=E : True=E

N
ﬁ
.
S

BN

Pred=E : True=E

Pred=EC : True=EC

Pred=E : True=E

Pred=E : True=EE

Pred=E : True=E

-
ﬁ?
ﬁ

Pred=E : True=E

Pred=EE : True=EE

)
(=1
1l
m
m

: True=E

m

Pred=EC : True=EC

\\/

x
o
-
[o
)
% J

22
/«

o
=
=

v
2 3
(=%

n T

m m

g B

& 5
I

m m

-

p-

o

ﬁ- L\

n

m

bl

=

i’

1l

m

m

Classification model setup

* Deep neural network (DNN) was setup using open-source software
* Jupyter notebook running python using public libraries

* TensorFlow (now including Keras) was developed by Google Brain in
2015 with first stable version in 2017

* Consists of very efficient differentiable programming functions and
matrix solvers that are well suited to building neural networks

 Keras layer provides a good starting point for building most networks
* GPU support means that training takes a few minutes on a laptop

DNN architecture

(100, 100, 1) (98, 98, 32)

/

CNN (3x3)

47, 47,

21, 21, 64)
y %(10, 10, 64)

32)

/

/ MP (2x2)

/////

MP (2x2);

CNN (3x3)

MP (2x2);
CNN (3x3)

(6400)
(NHL)
(3)
1]1E
0 |EE
0]EC
Fully
connected
layer
Fully
connected
layer

Flatten

Hyper parameter optimization

* Randomly split the data into training (10000) and test (5000) images

* \Vary the parameters for training the DNN, e.g.

 Number of nodes in the hidden layer

e Learning rate, batch size and epoch size
 Amount of training data used: more is typically better, but good to see what
the least amount of data that is required for an accurate model

* Best model is the one with the best accuracy
* Accuracy defined as the fraction of correct predictions on the test data
* For other use cases compute time, storage and/or memory could be included
* |deally models are robust to inputs not in the original training data
* Lower number of parameters often makes a model more robust

DNN architecture: code

build the model using sequential layers

model = Sequential ()

3 sequential 2D convolution layers followed by Rectified Linear Unit (Relu)
activation function and a 2D max pooling layer
model.add (Conv2D (32, (3, 3), input shape=x train.shape[l:]))
model.add (Activation('relu'))

model .add (MaxPooling2D (pool size=(2,2))) out = (49, 49, 32)
model.add (Conv2D (32, (3, 3))) n paras = 9248

n paras = 320

#
=
#

model.add (Activation('relu')) # out = (47, 47, 32)

=
#
#
#

out = (98, 98, 32)

model.add (MaxPooling2D (pool size=(2,2))) out = (23, 23, 32)
model.add (Conv2D (64, (3, 3))) n paras = 18496
model.add (Activation('relu')) ocut = (21, 21, 64)
model.add (MaxPooling2D (pool size=(2,2))) out = (10, 10, 64)
flatten to 1D data

model .add (Flatten()) # out = (6400)

dense connection to a hidden layer of variable number of nodes

model . add (Dense (dnnHLNodeNumber)) # n paras = 448070

another Relu activation function

model .add (Activation('relu')) # out = (dnnHLNodeNumber)

randomly set 50% of input units to 0: helps prevent overfitting

model .add (Dropout (0.5))

final output layer of the 3 classifications (E, EE and EC mechanisms)

model.add (Dense (n_labels)) # n paras = 213

sigmoid activation function for the final classification layer

model.add (Activation ('sigmoid')) # ot = (3)

compile the model using the ADAM optimizer for a specified learning rate

adam opt = keras.optimizers.Adam(lr=dnnLearningRate)

model.compile (optimizer=adam opt, loss='categorical crossentropy', metrics=['accuracy'])
Train the model, iterating dnnEpochs times over the data in batches of dnnBatch samples
model.fit (x train, y train, epcchs=dnnEpochs, batch size=dnnBatch)

DNN architecture: parameters

* DNN model parameters: 476347

* Training data: 10000 images of 100x100 pixels (grey scale from O to 1)
 Labelled with single classification of 3 possible values

* Training data is equally balanced for each classification

* Knowing how much data you need is more art than science

* Convergence in accuracy as more training data added
(see paper for details)

* Training starts from random number for each of the 476k parameters
* Final model will be non-unique

Accuracy: confusion matrix

* Here there are a relatively
small number of classes

e Useful to see the
confusion matrix

* Note there is some
confusion where EE or EC
is predicted to be E

e Can then follow up on mis-
classifications in the model

True mechanism

E EE EC
Predicted mechanism

Need for domain knowledge

* A model will ALWAYS give an answer, but it will never know if it was
right. It lacks understanding

e At it’s best a ML model is a black box that becomes more accurate
with more data while not suffering from bias

* An expert human can always wonder “that doesn’t seem right...”
* How can we investigate further?

 Sanity checks on edge cases (looks for bias)
 Stress tests to find where it will break (check robustness)

“Sanity checks”

* Examine misclassifications ' __ Yeermen
(e.g. EC to E) = -
* Here there is a physical £
reason in that a low 8 .
chemical rate constant s
reduces the EC 204
mechanism (A + e = B; 3
B = C) to a single electron a 02
transfer reaction
(A +e= B) 0.0 B —
10° 107 10" 10° 10’

Forward chemical rate constant (s~1)

“Stress test”

Scatter = 0.0 Scatter = 0.2 Scatter = 1.0

* Every model is invalid
somewhere

* Find where the model
breaks

* |s that within tolerabl
S a WI I n O e ra e E 51%; EE 43%; EC 6% E 44%; EE 27%; EC 29% E 18%; EE 62%; EC 19%

bounds? A A
* Fine here as the noise '/R W

must be more than 25% e

the magnitude of the ‘

signal to mis-classify

Productionize model

* Aim Of the mOdeI is to CIaSSify a) P(E, EE, EC) = OEO, 0.48, 0.02 b) P(E, EE, EC) = 0.00, 1.00, 0.00

new experimental data without
human input

* New data is converted to ML —
friendly image (right) j o

* DNN classifies imaFe and gives L | "
the probabilities of each T -

* Parameters for the most likely

mechanism (e.g. rate constants)

can now be automat|cally Classification probabilities determined by DNN using

Optl mized experimental cyclic voltammetric data sets derived
* ML models often get stuck as from (a) E (Fc*) and (b) EE ([SVW,,0,0]34- and
“proof of concepts” — must be [SVW,,0,4,]475") mechanisms.

productionized for it to be useful

Summary of a DNN results

* New experimental data automatically
classified (within 5 ms) into 3 common
electrode reaction types

* Next version will be developed by Luke
Gundry (School of Chemistry, Monash) to use
FTAC data with more reaction types

* First step of an automated data flow
consisting of classification, optimization (with
group at Oxford) and a “next experiment”
recommendation engine

. Onl.ine version will aIIow_massive time .
savings for research and industry chemists
from around the world

Using ML tools to augment role of a scientist

* ML models have a black box problem

* Any tool must be as robust and as clear of bias as possible
* sanity and stress tests needed to know their limitations

e Aim is to use ML tools to save researcher’s time

* ML will not replace researchers as deep understanding will
always be needed to interpret the results

* Note that the same is true in industry

