Make plots for this particular case since we also have the theoretical value at steady state to determine which is accurate. For a RDE comparison to DigiElch 7 which includes surface confined reactions see test named ads03
.
For a concentration in solution of $C$, the Levich current is given by
\[ I_L = (0.620) n F A D^{2/3} \omega^{1/2} \nu^{-1/6} C \] where
# import required python packages
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
# load t,E,i from MECSim debug file
time, eapp, current = np.loadtxt('EC_Model.tvc',usecols=(0,1,2), unpack=True, skiprows=1)
Iss_Sim = current.min()
ndatapoints = eapp.size
Iss_Rev = current[ndatapoints/2]
print 'Current min/mean/max = ',current.min(),current.mean(),current.max()
print ' E_app min/mean/max = ',eapp.min(),eapp.mean(),eapp.max()
print ' Current at E_rev = ',Iss_Rev
RDE_radius = 0.178412412
RDE_rotation = 261.79938779914943653855361527329
RDE_viscosity = 1.0e-2
RDE_diffusion = 1.0e-5
RDE_conc = 1.0e-6
RDE_area = np.pi*(RDE_radius**2.0)
F = 96485.33289
ne = 1.0
iLevich = (-0.620*ne*F*RDE_area*(RDE_diffusion**(2.0/3.0))*(RDE_rotation**0.5)
*(RDE_viscosity**(-1.0/6.0))*RDE_conc)
print iLevich, iLevich/current.min()
plt.figure(figsize=(8,6),dpi=100)
plt.rcParams['xtick.major.size'] = 5
plt.rcParams['xtick.major.width'] = 2
plt.rcParams['xtick.minor.size'] = 3
plt.rcParams['xtick.minor.width'] = 2
plt.rcParams['ytick.major.size'] = 5
plt.rcParams['ytick.major.width'] = 2
plt.rcParams['ytick.minor.size'] = 3
plt.rcParams['ytick.minor.width'] = 2
plt.rcParams['axes.linewidth'] = 2
plt.rcParams['lines.linewidth'] = 2
plt.rcParams['xtick.labelsize'] = 14
plt.rcParams['ytick.labelsize'] = 14
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
plt.plot(eapp,current, 'k', label='A', linewidth=2)
plt.plot([plt.xlim()[0], plt.xlim()[1]],[iLevich, iLevich], 'r')
plt.ylim(1.01*iLevich, plt.ylim()[1])
plt.xlabel('Voltage (V)', fontsize=20)
plt.ylabel('Current (A)', fontsize=20)
plt.savefig('RDETest.png')
plt.savefig('RDETest.ps')
plt.savefig('RDETest.pdf')
The red line above corresponds to the theoretical value from Zhang & Bond 2007 and the black curve is the simulation results from MECSim.